

NEDO's Power-to-Gas technology development activity

29 September, 2020 Eiji Ohira New Energy and Industrial Technology Development Organization (NEDO)

Japan's Policy on Hydrogen

Action Plan: "Strategic Roadmap for HFC"

		Goals in the Basic Hydrogen Strategy	Set of targets to achieve	Approach to achieving target
Use	Mobility	FCV 200k b y2025 800k by 2030	2025 ● Price difference between FCV and HV ($\$3m \rightarrow \$0.7m$) • Cost of main FCV system (FC $\$20k/kW \rightarrow \$5k/kW$ Hydrogen Storage $\$0.7m \rightarrow \$0.3m$)	 Regulatory reform and developing technology
		HRS 320 by 2025 900 by 2030	$ \underbrace{ 2025 } \bullet \begin{array}{l} \textbf{Construction and} \\ \textbf{operating costs} \end{array} \left(\begin{array}{c} \textbf{Construction cost } \texttt{¥350m} \rightarrow \texttt{¥200m} \\ \textbf{Operating cost } \texttt{¥34m} \rightarrow \texttt{¥15m} \end{array} \right) $	 Consideration for creating nation wide network of HRS Extending hours of operation
		Bus 1,200 by 2030	• Costs of components for $(Compressor \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Increasing HRS for FC bus
	Power	Commercialize by 2030	2020 • Efficiency of hydrogen power generation (26%→27%) %1MW scale	 Developing of high efficiency combustor etc.
	FC	Early realization of grid parity	 <u>2025</u> • Realization of grid parity in commercial and industrial use 	 Developing FC cell/stack technology
Supply	Fossil +CCS Fuel +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	Early 2020s Production: Production cost from brown coal gasification (¥several hundred/Nm3→ ¥12/Nm3) • Storage/Transport : Scale-up of Liquefied hydrogen tank (thousands m→50,000m) Higher efficiency of Liquefaction (13.6kWh/kg→6kWh/kg)	
	Green H2	System cost of water electrolysis ¥50,000/kW in future	2030 Cost of electrolyzer (¥200,000m/kW→¥50,000/kW) • Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) electrolysis	Designated regions for public deployment demonstration tests utilizing the outcomes of the demonstration test in Namie, Fukushima Development of electrolyzer with higher efficiency and durability

As Innovation Hub,

- Promoting of industry-academia collaboration

- Accelerating social implementation of technology

Established in 1 October, 1980 Number of Employees: 1,095 (as of 1 April, 2020)

including temporary assignment from Central / Local Government, Private Company, Research Institute

Budget in FY 2020: JPY 159 billion (US\$ 1.4 billion)

Current Agenda

1. Improving electrolysis technology

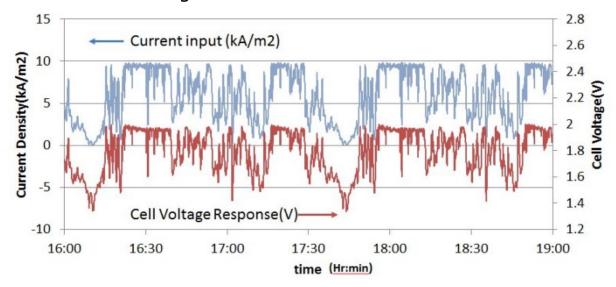
- Analyzing reaction mechanism (performance, durability, etc.)
- Develop lifetime evaluation technology
- New material / CCM / system concept
 - (ex. PGM-free catalyst, Anion Exchange Membrane, etc.)

- others

2. Developing System Technology

- Total system design, optimization
- Energy management based on several data
- Operation, maintenance
- Scaling-up
- others

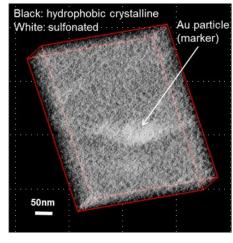
Developing Electrolysis Technology (Alkaline)

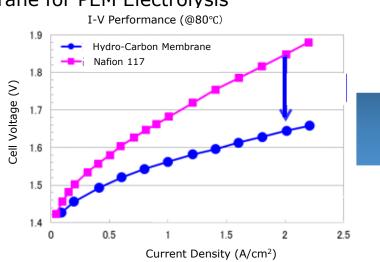

Asahi Kasei developed large scale Alkaline Electrolysis (2013 – 2019)

Spec:

- Cell Voltage : 1.78 V (@0.6 A/cm²)
- Cell Area : 3m² /cell
- Current Density: < 0.6 A/cm²
- Operation Temperature: <90°C
- Operation Condition: Normal Pressure

Load Following Test:



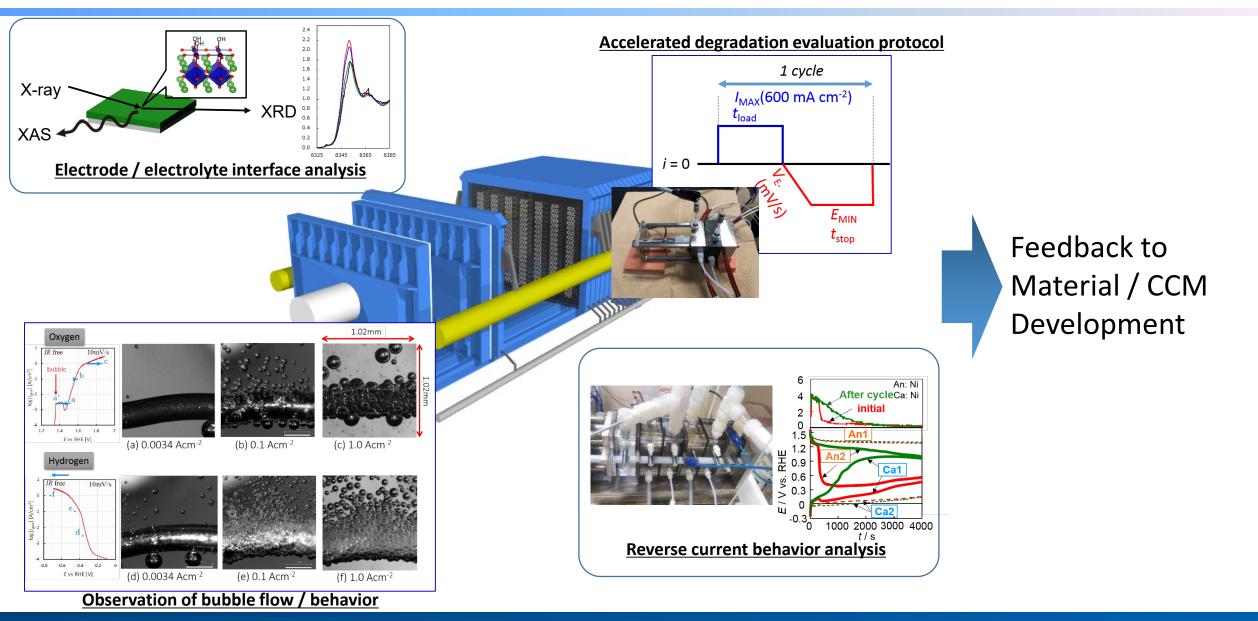

dn

Scaling

Developing Electrolysis Technology (PEM, SOEC)

Toray: Hydro-Carbon Membrane for PEM Electrolysis

25kW Test System

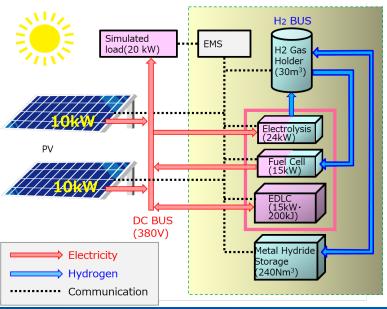

Toshiba: SOEC

Basic Research on...

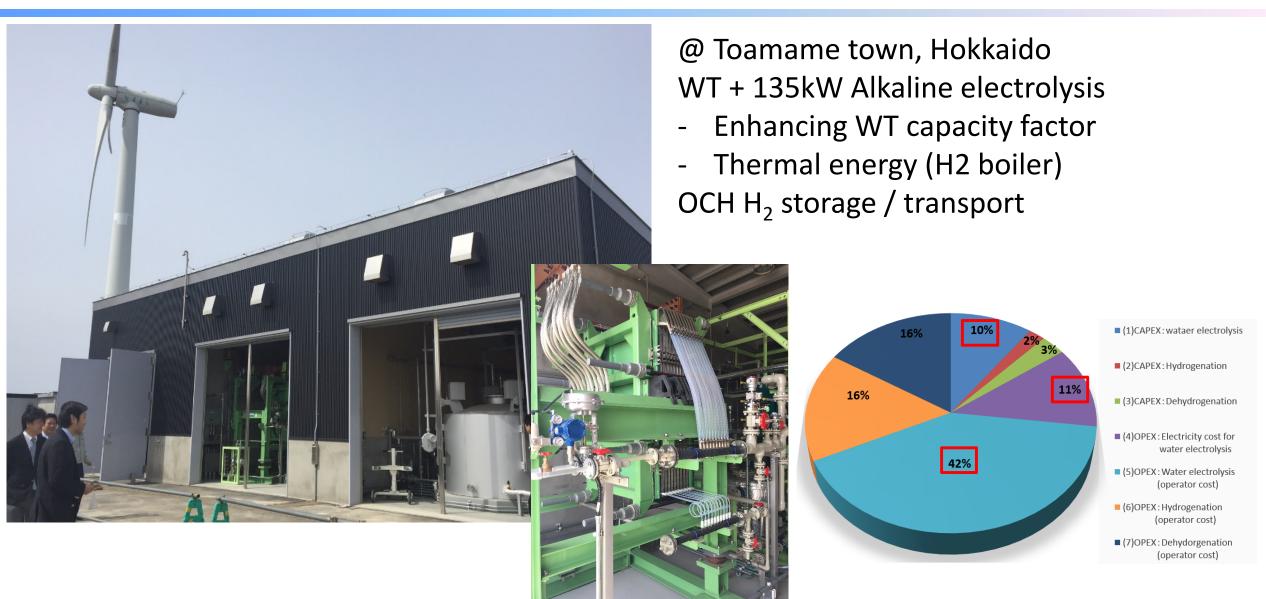
- Elucidation of cell/stack deterioration mechanism
- High durability cell/stack design guideline
- Performance evaluation

Developing Electrolysis Technology (Analysis)

Developing PtG Technology (Small scale)



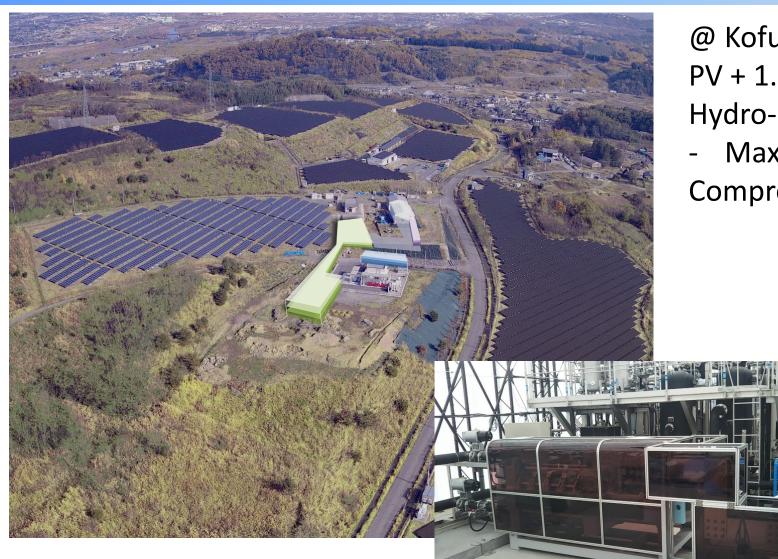
@ Sendai city, Miyagi Prefecture(Water purification plant)PV + 24kW PEM electrolysis


- Leveling PV output power

Emergency power supply by Fuel Cell
 Electric double layer capacitor
 Compressed & Metal Hydride H2 storage

Developing PtG Technology (Small scale)

Developing PtG Technology (MW class)


@ Namie town, FukushimaPV(20MW) + 10MW Alkaline electrolysis

- Maximize utilizing PV power
- Grid balancing
- x 12 Compressed hydrogen trailer for storage 1.5MW-10MW input power for electrolysis

Developing PtG Technology (MW class)

@ Kofu city, YamanashiPV + 1.5MW PEM electrolysis withHydro-Carbon membrane

- Maximize utilizing PV power Compressed & Metal Hydride H₂ storage

Conclusion

- Sovernment leadership should be required
 - Developing market environment, roadmap, etc.
 - Reducing uncertainty to invite "players"
- > Technical challenge needs to be continued
 - Reliability, durability, efficiency, etc.
 - System optimization, operation, EMS...
 - Integration: Basic research Field test

> How to develop business model

- Developing opportunity for "Experience"

Thank you!